A Comparative Analysis of Intelligent Agents
and State Machines:
Models for the game Domain.

Student: Arran Bartish
Supervisor: Charles Thevathayan
Second supervisor: Peter Bertok

November 30, 2001

Declaration

I here by declare that the research following is entirely the work
of Arran G. Bartish, under the supervision of Charles Thevathayan
and Peter Bertok and that all sources and references have been duly
and fully acknowledged.

Arran G. Bartish
Signed November 30, 2001

Contents

Introduction

Statement of the Pro

blem

Background of the Problem
3.1 JACK . . . e
3.2 Games e e

3.2.1 Finite State

Machines

3.2.2 Current Game AI Technology and Trends

3.3 A State Transition

in Thinking

3.4 Simulation Vs Gameo
3.5 Atomic Bomberman

An Experimental Comparison

4.1 Performance Comp

ATISON .« .« v v v v i e e e e

4.1.1 Average Decision Time
4.1.2 Performance Scalability
4.2 Comparison of effort and duration
4.2.1 Estimated Development Effort
4.2.2 Estimated Effort of Modification
4.3 Software Engineering Comparison

4.3.1 Incremental
4.3.2 Complexity

Discussion

5.1 Complexity . . .
5.2 Effort
5.3 Performance . . .
Conclusion

6.1 Complexity . . .
6.2 Effort

6.3 Performance . . .

Further Work
7.1 Team Behaviour .
7.2 Hybrid Approach

List Of Modifications
A.1 State Machine . .
A2 Agent

Modification
of Incremental Modification

13
13
13
16
19
20
23
26
26
30

34
34
35
36

37
37
37
37

37
37
38

List of Figures

1

10
11

Current Industry trends with regard to Al resource allocation.

Chart Extracted from [31], 9
Blue and Red Bombermen at initial Starting locations. 12
Performance of both models after 2000 runs in a 1 Vs Many
situation Lo 15
Performance of both models after 2000 runs in a Many Vs Many
situation L L 16
Performance of both models after 2000 runs, as the number of
Bombermen increase by 2’s from 4to22 18
Initial State Machine definition for Bomberman before modifi-
cationo e 28
State Machine definition for Bomberman after modification (Changes
showninred) L oo oL 29
A Simple agent definition that novice Agent designers can quickly
understand. Lo L 30
A common design modification produced by experimentation . . 30
A small and simple State Machine 32
A worst case addition to the small and simple state machine in
figure 10 oL 32

List of Tables

1

Basic COCOMO figures given a type of project. Values used
have been extracted from [22]
Boehm and COCOMO Estimation of effort based on KLOC
Boehm estimation of effort before and after design modification
in Person Months
COCOMO Estimation of effort before and after design modifi-
cation in Person Months,
COCOMO Estimation of Duration before and after design mod-
ification in calendar months
McCabe’s cyclomatic complexity values. [22]
A summary of all modifications required to add a simple change
to behaviour. (See appendix for more detail
The time taken to make modifications in minutes
Complexity of State transitions and Agent plan initiation

Abstract

The Study of game related topics has long been the subject of re-
search and development, however game Artificial Intelligence (AI)
still uses classical AI simulation techniques. The AT community con-
tinues to develop concepts regarding various types of agents, genetic
algorithms, and others, while older computational models such as
state machines continue to be used as the back bone for game Al
development. In this research, we have attempted to shed some light
on how the choice of implementation may affect the important fac-
tors such as performance, complexity and estimated-effort, as the
games scale up. We have used performance measures, cognitive ac-
tivities of designers and software metrics to arrive at our conclusions.
Our findings show that agents and finite state machines have their
relative merits. We have shown that, complexity measured as a func-
tion of the number of behaviours was linear for agents and quadratic
for FSM. Though run-time performance is comparable for a small
number of entities, it degrades faster for agents.

1 Introduction

Over the past years games have experienced many improvements,
unfortunately many of these have not been in game AI. This has
lead to problems where released games are spectacular in either 3D
graphics, or in user interface, but Artificial Intelligence seems ne-
glected. This is the part that makes a game fun and challenging
to play. Despite much academic research being devoted to Al, the
games industry continues to use rudimentary computer science tech-
nology such as State machines to create the desired behaviour for
game entities. Recently the mould has begun to crack as a number
of game titles are changing tack and focusing upon AI rather than
graphics and interface. This could be a sign of things to come es-
pecially given the popularity and longevity these titles have enjoyed
since release.

Given this seemingly changing environment in the games indus-
try, exotic models for AI are being explored, but few ever get in-
corporated into games. This is partly due to the industry’s general
comfort with existing models, and the ever increasing urgency to re-
lease games in a shorter space of time. To our knowledge there has
not been a formal comparison of current game AI technology such
as State Machines, and what is considered exotic forms of game Al
like the Belief-Desire-Intention (BDI) Agent Architecture.

A formal definition of the pros and cons of both current game
technology and BDI agents, will be one small step closer to providing
a higher quality of entertainment. Few industry’s in information

technology can boast such a broad range of core computer science
fields. Games provide unique environments to test new and exotic
technologies that otherwise could not be thoroughly tested in real
world environments.

2 Statement of the Problem

The new games appearing in the market are using more human
like characters and are incorporating forms of cognitive learning.
Some attempts have been made to incorporate some of the newer
technologies such as BDI in game development. However no thor-
ough work has been done about the merits of these newer technolo-
gies.

The objective of this research is to find which model is more
appropriate for game Al, and under which circumstances one model
might be chosen over another. Due to the frustration of the indus-
try and of users with what seems to be behavioural simplicity of
Game Al, we must define the advantages and disadvantages of both
traditional state machine based and a BDI agent alternative game
Al These choices will be determined through performance, iterative
modification, and software engineering criteria. The reason being
that each of these issues is of key importance to game development,
a major software development undertaking.

3 Background of the Problem

Intelligent Agents have been the subject of many papers in the
past. For further reading on the subject of agents, please see the
following [1][3][7][9][10][11][12][14][19][20][23][24][25][32][33][34]. This
paper will also lead into future topics of research that could be ex-
plored in game AI. We refer the reader to the following papers on
agent teamwork and negotiation [4][5][6][26][27][28].

3.1 JACK

JACK is an agent programming language developed by an Aus-
tralian based company called Agent Oriented Systems. It is an ex-
tension to the JAVA API, which allows the use of several other base
classes. These base classes include Plan, Event, Database as well as
some others. JACK allows the simple and easy definition of sim-
ple intelligent agents and BDI agent, with very little trouble for the
programmer. JACK also allows the programmer to use the normal
JAVA API, a huge advantage considering the growing popularity of
the language.

JACK is the base we used to create our Bomberman agent. The
reason for this was two fold. The first and most obvious reason is the
availability of JACK and the support from Agent Oriented Systems.
The second being its relationship with JAVA to allow quick platform
independent development. In addition to this, we could develop an
agent model and state machine model that were both JAVA based.
It would not be a justifiable comparison if the two models were based
on separate languages. Using JACK allowed us to use inheritance
and other object oriented techniques that gave us the flexibility to
swap one model for the other as required.

In order for us to do a comparison on state machines and agents,
we need to describe how a JACK agent chooses to execute plans.
JACK seems to have taken inspiration from event driven program-
ming, as JACK agent plans are dependent upon event-like goals.
Our JACK agent uses rule-based evaluation (similar to the state
machine) to decide which event should be fired. When an event is
fired the relevant plans are initiated and can be executed. So in
this way events are much like goals in that when an event is fired,
plans are executed to achieve the goal represented by the fired event.
JACK allows a lot of versatility in this matter, and plans can evalu-
ate their own suitability before they execute. Many JACK features
such as plan self-evaluation and teamwork, were left out to allow for
a fairer comparison between state machine and agents.

Unfortunately JACK also has a number of problems. Some of
these problems were cited by John Thangarajah [29]. He highlights a
problem with JACK in its inability to represent goals in a traditional
sense, a fundamental concept for BDI agents. He continues to de-
scribe his proposed addition to JACK to allow this feature. It must
be noted that while this addition could be made in future research,
we have used unmodified JACK as this would suffice for the pur-
poses of this research. The version we used was JACK 3.2 released
in the middle of 2001. For more information on JACK please see
user guides [17, 16]. For more information on JACK and teamwork
see [18].

3.2 Games

Games programming involves many core areas of computer sci-
ence. Increasing the computational requirements of games pose
many problems. Some of the problems being tackled range from
graphics clusters, algorithms for polygon limiting, artificial intelli-
gence, and NP complete problems like “travelling salesman”. This
makes the game industry a fine test bed for innovative ideas and con-
cepts at the leading edge of current technology. There has always
been constraints forced on game AI, brought about through the need

for graphics and IO processing, however these are becoming less of
a problem as hardware for these purposes improves.

3.2.1 Finite State Machines

State machines have long been the most popular implementation
of game entity behaviour [31]. State machines are easy to under-
stand, and are a concept most computer science graduates have been
exposed to. Students commonly use state machines for the parsing
of grammars. What most of these students don’t understand is that
a state machine can be a very powerful implementation to simulate
intelligent behaviour in games. They have been the traditional im-
plementation for game AI for many years, and it appears they may
be for many more. The basic characteristics of a state machine are:

e That it has a fixed amount of memory.
e A State machine is driven by input.
e It undertakes transitions between states.

e It produces simple output.

The concept of a finite state machine has long been developed and
improved over the past decades to include variations such as fuzzy
state machines and fuzzy logic. However these implementations will
not be the focus of this research, and a traditional finite state ma-
chine will be used during the experiments. For an introduction to
finite state automata or if the reader desires more information about
the topic of computation, we refer you to [15] for an in depth intro-
duction and description of finite state automata. State machines
can be used to process complex and dynamic game environments.
However they are prone to software engineering issues [30, 13], such
as duplicate state decision points, that threaten to break even well
designed State Machines.

State machines are best described as deterministic by nature,
and implementing them can lead to software engineering problems
as mentioned above. There are three prominent ways to implement
a state machine [13], and the choice as to which implementation was
to be compared in this research was of utmost importance. The first
is using a block of if, or switch statements which are executed on
some condition or state. This method could easily lead to duplicate
state decision points, a common flaw in this method. A duplicate
state decision point can occur through poorly documented code, and
results in conflicting transition conditions. In addition they blur
the concept of state and transition where a transition or condition
statement might contain the implementation of the state. Another
implementation is a decision table, indeed a number of games have

used this implementation. It is fast, however it restricts versatility
and this is far from satisfactory given the dynamic environment of
games. The third choice (and the one used for this comparison) is
an Object State Machine, where a state and its implementation and
transitions are encapsulated by an object. State transitions in the
object state machine are represented by an engine that keeps track
of the current state. This model has a slightly higher run-time cost,
but it’s conceptual advantages out weigh this cost.

3.2.2 Current Game AI Technology and Trends

w One or more m Percent of overall
developers dedi- game CPU reserved
cated to game Al for Al processing

|100 S
90 3
80 d
o 70 (
L+F]
T a
s : %
30 il
0{5=— "4 B8
o : |
oLl | : |
1997 1998 1999 2000 2001 GDC

Figure 1: Current Industry trends with regard to Al resource allocation. Chart
Extracted from [31]

Steven Woodcock sites at the 2001 Game Developers Conference
that the majority of games being released still use a State Machine
implementation [31]. This is interesting however, as the industry as
a whole seems to be devoting more resources than ever before to
game Al. In the same article, Steven Woodcock describes how the
number of programmers per project devoted to AI has grown from
1 just 5-6 years ago, to a dedicated team of developers per project
(see figure 1). For convenience figure 1 has been provided. He also
discusses how greater amounts of CPU time are also being allocated
to AI processing. This could be partly related to the fact that a lot
of graphics processing that used to be undertaken by the CPU, is

now being delegated to dedicated graphics accelerators. This would
have the effect of leaving the CPU available for other tasks. Most
developers feel that AI is growing in importance and will have a
greater effect on games of the future [21].

State machines have a number of inherent problems. One such
problem is referred to as duplicate state decision points as cited
by [30, 13]. This is a software engineering issue that can be quite
troublesome and could potentially break any State Machine. This
problem usually occurs when code is not properly commented and
documented. The result being states could be implemented that
have conflicting or identical state decision points, or conflicting rules.
Obviously this could cause a detrimental effect if your in-game tank
suddenly finds itself in an incorrect state due to one of these con-
flicting rules. The second problem is more of a problem inherent
in all state machines. Because state machines are deterministic by
definition, the behaviour produced by a state machine is also de-
terministic. This leads to behaviour that is predictable. To avoid
predictability, most developers are either using fuzzy state machines
or fuzzy logic, even so these are still based on a model state machine
model. Indeed most of the AI scripting that is being implemented
for most games gets abstracted into some form of State Machine.
While more exotic models for game AI are being looked into, de-
velopers with ever decreasing schedules are finding that the time
required researching these other models are beyond what they can
afford. So in the tradition of commercial industry, many new and
exciting techniques are being put into the too hard bin as develop-
ers resort to the tried and tested techniques such as the finite state
machine.

As the average bandwidth a user has available for communica-
tion increases with connections to the internet such as ASDL and
Cable, games are starting to show a shift away from single user
environments. Instead users are finding that games can be more
challenging and generally be more fun due to multi-user aspects of
the games. These games particularly are aimed at the multi-player
environment and yet we find that AI could be just as important
even though AI might not be required. Often users logon to a game
server to find it empty just to leave and find another server. An-
other situation that might arise is where users find themselves in un-
balanced teams, where the team of greater numbers dominates the
game. What would be the result if believable BDI agents could be
introduced to add some numbers to a realm or even out mismatched
teams dynamically during game play and of course be removed when
no longer needed? Such features would improve the experience of
online gaming in general. The team aspect is of utmost importance
when talking about games dependant on teamwork. In most cases Al

10

is not required, however there are those times like those mentioned
above, when plausible AT opponents would be of great value to the
game. It must be noted that AI opponents can already be included
most games, however these opponents are either ordinary in skill, or
not plausible as a human player, ie too hard, or too easy.

3.3 A State Transition in Thinking

Recently there has been a real break from the established mould
of game AI by the game Black & White by Lionhead Studios [21, 8|.
The use of the BDI architecture as well as a number of cognitive
learning skills show just how appropriate agent concepts are to these
highly dynamic virtual environments. Included in Black & White are
other agent concepts such as agent emotions, where game characters
can become depressed and exhibit human reactions to these emotions
such as binge eating. Obviously this adds whole new dimensions to
the game experience. It could be that this is the start of things to
come in game Al, citing games such as Black & White, The Sims,
and others with sophisticated user interaction as proof of concept.
Just as graphics have been a draw card for most games in the past,
sophisticated AI could be a draw card for games being produced
in the future. It is hoped that by producing games with greater
intelligence, game characters will challenge the user and keep their
attention for a greater period of time than they do currently. This
change in focus shows that the game industry is beginning to mature
from the 3 friends in a garage to an industry that is relying heavily
on research and creative thinking coming from the academic world.

The way in which Game development is changing also reflects the
growing focus of Al in games as figure 1 shows. There is a trend that
most development teams are allocating at least 1 or more personnel
specifically to AI which is in contrast to only a few years ago, where
game AI was hacked together in the last month or so of the project
by anyone who had time. In addition to this, as mentioned before, AI
is being allocated more CPU time than it ever has been previously.
This, coupled with the increased allocation of human resources to Al
development, makes it clear that developers are giving AI a much
higher priority than it has enjoyed in the past. We can therefore infer
that we will see more of the sophisticated AI prevalent in Black &
White in up future games.

3.4 Simulation Vs Game

There is a difference between a simulation and a game. However
sometimes that line blurs, making the distinction difficult to identify.
We find that simulations are often based on real world environments
and physics. A game however, will embellish those truths in the

11

interest of user entertainment. When someone decides to create a
simulation, the object is to model something as close as possible
as it is in the real world. The line that distinguishes simulations
and games blurs during the design of a game when designers decide
to make a game both enjoyable to the user and keep behaviour in
the game realistic. Past research has seen Agents used in battle
simulations [27, 28] for teamwork, and in games such as Pengi [1].
Even with research such as this, it seems that very little investiga-
tion has been done on direct comparisons between developing agent
architectures such as BDI cognitive agents and the classic game Al
implementations of state machines.

3.5 Atomic Bomberman

ullllll it i

.m““l i i
it

||!H|l i

Figure 2: Blue and Red Bombermen at initial Starting locations.

Atomic Bomberman was a game produced by Interplay in the
mid 1990’s. Atomic Bomberman is a recreation of a much older
game that has long been popular and was first released around the
same time as Pac Man. It is a 2D game with an obvious state ma-
chine implementation, which often leads to predictable and simple
behaviour. Figure 2 shows a possible start of game situation for a
blue and red Bomberman. The objective of the game is to remove
crates and create a path toward the enemy. Following this, they must
try and trap their enemy and blow them up. A problem that faces
the Bombermen is to move toward the enemy, without blowing them-
selves up. When contact has been made they must attempt not to

12

get trapped themselves while endeavouring to trap their opponent.
Bomberman is a dynamic environment that is changing constantly.
This fact makes Bomberman a perfect candidate to test Agents. It
must be noted that this research is not about Bomberman, but a
direct comparison of the two models. Hence the game is subject to
change in order to produce more accurate experimental results. In-
deed changing the game by adding new game entities, and analysing
how it effects the software development process, is an important part
of this research.

4 An Experimental Comparison

The question was raised early in this research whether it would
be a fair comparison to compare a state machine with an intelligent
agent. Given the complexity originally intended for the agent model,
and the relative simplicity of the state machines, the obvious answer
was no. For this reason it was decided to attempt to keep the ca-
pabilities of the state machine and the agent reasonably even in the
interest of a fair comparison. Because an experimental approach was
used in order to make an accurate comparative study, the following
chapter is broken up into types of comparison, eg. performance,
software engineering issues, and iterative modification effort com-
parisons.

4.1 Performance Comparison
4.1.1 Average Decision Time
Hypothesis

It is expected we will find that the agent model will be slower
than the state machine model. This is not a hard conclusion to come
to when you consider the agent model has some JACK components
included. These JACK components can be considered an overhead
that the agent model must contend with. The question is just how
Sfast is the Agent model in relation to the State Machine. Both im-
plementations are similar and have the same capabilities, so this will
allow us to test the architectures themselves. During development
it was noted that decision time seemed comparable. To rule out any
abnormal behaviour, this experiment ran the game 4000 times, and
used the results produced to calculate the average.

Apparatus

To do this experiment we used the following items.

e 1 Bomberman game which will be used as the test environment.

13

1 State machine implementation of a Bomberman with 2 instances in the
game.

1 intelligent agent implementation of a Bomberman with 2 instances in
the game.

1 parser to parse the results of the experiment.

1 PIIT 900 Computer with 128 MB of RAM.

Method
The method we used to setup and run the experiment is as

follows.
1. Firstly we found a static environment on the fastest isolated PC we had

available. This was so that we would see just how fast each model was
at it’s best.

. We set up the experiment to run for 4000 games.

After this we broke the experiment into two sets so that 2000 games
would be run in single player mode, while the following 2000 would be in
team mode.

We gave each Bomberman (2 State Machines and 2 Agents) a starting
location an equal distance from all other Bombermen.

To be sure that starting positions did not effect the results we had all
Bombermen change to direct opposite starting positions half way through
each set. This way we could be sure neither model could possibly be
disadvantaged. You could probably compare this to changing ends of the
court in tennis.

. We let the experiment run until completion, which took approximately 4

days.

We put all results together and used a parser to add up the time taken for
each decision and then divided the total by all the number of decisions
made. The parser then produces an average for each model.

The parser was run twice, once on the team results and once on the single
player results.

Results

The results of these experiments can be seen in Figures 3 and

4. The charts show the performance in milliseconds of both models
over 2000 runs each. The results depict both the Agent model and

the

state Machine model. It is obvious from these figures that the

state machine implementation has outperformed the agent model as
expected. While both models had been programmed with similar

14

Average Decision Time {Free For All)

18
16
14
12
10

Milli-Seconds
[mn}

[) LN R A

state hachine Agent
Model

Figure 3: Performance of both models after 2000 runs in a 1 Vs Many situation

features, it appears the JACK overhead has had an effect on the
agent implementation that the state machine model avoids. Over
the 2000 runs of each experiment, we found that the agent model
was slower only by an overall margin of 26%.

It must also be considered that the current Game Engine and
Environment being used to run these experiments is reasonably sim-
ple. It is expected that as the required behaviour of the game Al
gets more complicated and less specialised, we may find that the gap
between the FSM and Agent run time could grow. However because
the JACK overhead would remain constant, it is also entirely possi-
ble that the margin that separates these two models would remain
the same. This could be a future experiment that could be run to
see how performance is affected by increased complexity. Also this
experiment would show whether the margin between the state ma-
chine implementation and the agent would grow or remain constant.
If the margin were to remain constant, this would mean the agent
models extra cost would be insignificant given a larger set of be-
haviours, making it a prime candidate for game AI. If the reverse
is true then we could expect an agent implementation to quickly
become unsustainable.

The final sets of the experiment were run with team play enabled
for 2000 games. In team mode, the Bombermen are divided into two
teams and will only attack Bombermen on the opposite team. In
the current experiments, the behaviour of these models is relying on
emergent team behaviour. Emergent team behaviour is due to the
Bombermen distinguishing between friend and foe. As figures 3 and
4 show, there is little difference when emergent team behaviour is

15

Average Decison Time (Team)

Milli-Seconds

s s —x =
[) N R O 3 A o T) AN R S

=tate Machine Agent
Model

Figure 4: Performance of both models after 2000 runs in a Many Vs Many
situation

introduced.

4.1.2 Performance Scalability
Hypothesis

It is thought that the experiment will show the agent to run
slower than the state machine and that this margin will grow slightly
over time.

Apparatus

The following items were used to under take this experiment
e 1 Bomberman game which will be used as the test environment.

1 State machine implementation of a Bomberman ranging from 2 in-
stances to 11 in the game.

1 intelligent agent implementation of a Bomberman ranging from 2 in-
stances to 11 in the game.

1 parser to parse the results of the experiment.

1 PII 350 Computer with 256 MB of RAM.

Method

The method used can be described as follows.

1. Firstly we found a static environment on the slowest isolated PC we had
available. As the objective was to find a trend over time, it was decided

16

that a trend would be more obvious during worst case performance for
both models.

2. We set up the experiment to run for 2000 games. and decided to leave the
emergent team behaviour enabled. We did this so that fewer Bombermen
would have to die to reach the final state. If you have 22 Bombermen,
in team play, at least 11 need to die to end the game, in single play, at
least 21 must die.

3. After this we broke the experiment into 20 sets. Games 1 - 100 were 2
State Machines Vs 2 State Machines. Games 101 - 200 were 2 agents Vs
2 agents. Games 201 - 300 were 3 State machines Vs 3 State Machines.
Games 301 - 400 were 3 agents Vs 3 Agents. This went on until the
final sets which were Games 1801 - 1900 for 11 State Machine Vs 11
State Machines. With the final set being 1901 - 2000 for 11 agents Vs 11
agents.

4. We attempted to give each additional pair of Bombermen equal spacing
from every other Bomberman.

5. Because we were timing a complete cycle of decisions for a group of the
one model, there was no need to swap positions.

6. We let the experiment run until completion, which took approximately
2.5 days.

7. We put all results together and used a parser to add up the total time for
decisions for an entire set of games. It then added up the total number of
cycles for the same set, and divided the total decision time by the total
number of cycles. This gave us the average decision time for an entire
cycle of a particular implementation.

8. The parser produced a separate average for every hundred games.

Results

Based on the last experiment we had a clue that the total cycle
time required for a group of agents would increase over time. We
did not expect this to increase so drastically as it does in figure 5.
We also notice that the state machines performance while slightly
more scattered than the agent model still shows a trend upwards
which is natural. What we can gather from these results is that the
overhead that the agents were displaying in experiment 1 has had an
accumulative and devastating effect. So in other words, when you
have 2 agents running per cycle, you have twice the overhead of just
1 agent.

What we are really interested in is the rate of increase shown
in figure 5. For each additional bomberman agent, approximately
31 ms are added to the average cycle time. Whereas the FSM only

17

Average Cycle Time

EEDD —+— State Machine ./

= —m— Agent /

§4|:||:| /./I

#1300

200 F_,.,//*:'/M
100+

I:I T T T I T I T T T
4] g 10 12 14 18 198 20 22
Number Of Bombermen

Total Cycle Time

Figure 5: Performance of both models after 2000 runs, as the number of
Bombermen increase by 2’s from 4 to 22

adds approximately 7 ms. Both implementations show a reasonably
linear rate of increase, though the FSM appears more erratic. The
linear increase in the agent model could be partially due to the use of
identical agents used in this study. It would be interesting to study
the trend when many different agents involving many interactions
among them were used.

The question remains as to why the massive increase for the agent
model and the almost constant performance for the state machine.
Obviously the agent is doing something that is fairly expensive, but
we kept the agent definition and the state machine definition almost
identical. Where could this expensive process have come from. The
Answer to this question comes from JACK. When a JACK agent is
built, it takes the definition and reduces it to a state machine. How-
ever as we have seen in our state machine, this isn’t the problem,
as we have a state machine that is running very quickly. Under-
standing that a lot of code has obviously been generated that was
not defined by the programmer. By definition each JACK agent is
a software component consisting of beliefs, events, goals and plans
and the threading of some of these are taken care of internally within
JACK’s generated code. The State machine we defined may initialise
one new state object and execute it, but we do not know exactly how
many objects are being instantiated by JACK, or how many threads.
Keeping in mind that thread initialisation is a notoriously expensive
operation.

18

4.2 Comparison of effort and duration

Correctly estimating the effort involved often determines the
success or failure of any software project. The COnstructive COst
MOdel (COCOMO) [22] is used by thousands of software project
managers. It estimates the number of person months required based
on the source lines on code (LOC). Though the advanced models take
into consideration other factors such as precedence, team-cohesion
and architecture. In our research we use a simple model based purely
on LOC as other factors are common to both implementations. As
the game developed is a simple one, we are particularly interested
in the incremental effort involved as more and more behaviours are
added. Thus in the second section we are measuring the incremental
effort. This would help us to predict the effort required as a function
of complexity.

In order to estimate and compare effort and project duration,
we will need to collect a number of tools that we can use. The char-
acteristics we will measure is the Effort required to develop each
module, and the Duration required. These might be the deciding
factors in which model to undertake. Software engineering methods
exist, such as COCOMO and other empirical estimation models that
are designed to measure exactly these code properties. Through
these techniques we can get estimates on effort and duration in per-
son months which we can use to determine development duration.
While these methods are usually applied at the beginning of projects
to produce estimates on staff and resource requirements, we will ap-
ply the same models to the completed Bomberman model we have
created. Having the exact measure of LOC brings a certain amount
of accuracy to these estimation techniques resulting in a more exact
measure of effort and duration.

One tool we will use is an empirical technique known as the
Boehm simple model. As a preliminary comparison metric this is a
very broad-brush estimate of effort only. However it is valuable to
be able to use a couple of estimation techniques and be able to verify
the results produced. The formula to calculate the Boehm simple
model is described in equation 1, where E is equal to effort in person
months and KLOC is a reference to every thousand LOC. The initial
values are constants that are usually calibrated with experience, and
based on the type of project being measured. Given our case we will
use the values verbatim for the Boehm simple model.

E =3.2 x (KLOC)"% (1)
To get a better indication of effort, we will apply another Software
engineering tool based on KLOC, known as COCOMO. COCOMO

is considered to be a more accurate technique as it has predefined

19

BASIC COCOMO MODEL

Software Project b bl Ch dh
Organic 2.4 1.05 15 033
Semi-detached a0 1.2 25 0.35
Embedded 36 1.20 25 032

Table 1: Basic COCOMO figures given a type of project. Values used have
been extracted from [22]

constants based on the type of project as table 1 shows. We will
evaluate both modules under the BASIC COCOMO model using
organic mode. Organic mode being a small project with a small and
experienced team working with requirements that are not very rigid.
This description best suits the two modules we are comparing. In
addition to these weights COCOMO uses the equations 2 to estimate
effort and 3 to estimate duration. E remains estimated effort in
person months, KLOC is still ever thousand LOC, and D is the
estimated duration in calendar months.

E = a,KLOC” (2)

D = c,E® (3)

4.2.1 Estimated Development Effort
Hypothesis

It is hypothesised that the State machine model would have
a higher estimated effort than that of the agent model due to its
size and its distribution of state transition logic. To be sure we are
going to test this in two parts using two estimation techniques. Both
these techniques will be based on the lines of code (LOC), under the
premise that the number of logical errors can be directly related to
how many LOC are present. While this is not an overly accurate
experiment, this coupled with later experiments will add credibility
to the comparison we are making. By giving us a measurement
of effort for the agent and state machine implementation, we can
compare these efforts to the effort of the modified models later.

Apparatus

To undertake this experiment we used the following items.

20

The written code for the state machine module .

The written code for the agent module.

The cat and wc functions under Unix.

The Boehm Simple Model of effort estimation. (See Equation 1)

The Simple COCOMO Model of effort and duration estimation. (See
table 1 and Equations 2 and 3)

Method

The method we used to do this experiment are as follows.

1. We isolated both modules so that we would only be dealing with the code
for that module.

2. The code was prepared for the experiment by removing all commented
lines and unwanted blank lines.

3. We executed the command “cat * | we -I” on each module separately
which concatenated the module together and counted every line. For the
agent model we got a result of approximately 900 LOC and approximately
1000 LOC for the State machine model.

4. Now we used these values to calculate The Boehm Simple Model (Equa-
tion 1) where we must use every thousand lines of code (KLOC), and E
is equal to the effort required in person months.

5. Simple estimation using Boehm model for the State Machine.
E = 3.2 x (KLOC)%
E =3.2x (1)%
E=32x(1)
E = 3.2 Person Months

6. Simple estimation using Boehm model for the Agent.
E = 3.2 x (KLOC)!%
E =3.2x (0.9)1%
E =3.2x(0.9)
E = 2.9 Person Months

7. To confirm the result we then used the COnstructive COst MOdel (CO-
COMO) to get a more accurate estimate effort and in addition to this
an estimated duration (table 1 and Equations 2 and 3). KLOC and E
retain the same meaning, however D is the duration

8. Before we could continue we had to evaluate the type that these models
could be characterised as. We decided upon the organic mode.

21

9. COCOMO for the State Machine

E = a,KLOC"

E =2.4(1)"%

E = 2.4 Person Months
D= CbEdb

D = 2.5(2.4)%%

D = 3.5 Months

10. COCOMO for the Agent
E = q,KLOC?
E = 2.4(0.9)1%
E = 2.2 Person Months

D = CbEdb

D= 2.5(2.2)0'38
D = 3.4 Months

Results

‘ Model ‘ Boehm Effort ‘ COCOMO Effort ‘ COCOMO Duration ‘

State Machine | 3.2 Months 2.4 Months 3.5 Months
Agent 2.9 Months 2.2 Months 3.4 Months

Table 2: Boehm and COCOMO Estimation of effort based on KLOC

We find the State Machine implementation has a slightly higher
degree of effort in addition to this it also has a slightly longer dura-
tion. It must be noted that these are only estimates and are almost
totally based on lines of code. Neither COCOMO or the Boehm
simple model take into account design of the module, or the time
required to trace bugs and refactor. Even so, these comparisons are
valuable in showing that the agent model may at least save anywhere
from a few days to week in development time that could be crucial
to debugging and testing.

Another observation is the ~10% more lines of code of the state
Machine than that of the Agent Model. This is interesting con-
sidering the relative simplicity of these implementations of the Al
in Bomberman. If one then consider that logical errors are depen-
dent on an organisations usual error, yet will remain proportional to
LOC [2], we can infer that the state machine implementation would
have ~10% more logical errors than the agent module. If we look
at this from the other angle, the converse of this is to extrapolate
that an Agent implementation would have ~10% fewer logical errors
when compared to a state Machine implementation and would still

22

produce the same behaviour. While both of these modules are rela-
tively small, that ~10% difference can make a huge difference when
KLOC is increased from 1 thousand LOC to ~7 thousand LOC.

4.2.2 Estimated Effort of Modification
Hypothesis

It is hypothesised that the State machine model would have
a higher estimated effort than that of the agent model. This is
assumed from the results of the last experiment, but the question
is whether or not the margin that separates the two models will
remain constant, or if we will notice a significant difference emerge.
We will rerun the Estimated Development Ejffort on the modified
code based on a design modification from Incremental Modification
in the next section.

Apparatus

To undertake this experiment we used the following items.

The written code for the modified state machine module .

The written code for the modified agent module.

The cat and wc functions under Unix.

The Boehm Simple Model of effort estimation. (See Equation 1)

The Simple COCOMO Model of effort and duration estimation. (See
table 1 and Equations 2 and 3)

Method

We followed the same method we did for Estimated Development
Effort.

1. We isolated both modules so that we would only be dealing with the code
for that module.

2. The code was prepared for the experiment by removing all commented
lines and unwanted blank lines.

3. We executed the command “cat * | we -I” on each module separately
which concatenated the module together and counted every line. For the
agent model we got a result of approximately 1000 LOC and approxi-
mately 1200 LOC for the State machine model.

4. Now we used these values to calculate The Boehm Simple Model (Equa-
tion 1) where we must use KLOC to estimate E.

23

5. Simple estimation using Boehm model for the State Machine.
E = 3.2 x (KLOC)!%
E = 3.2 x (1.2)0
E =32x(1.2)
E = 3.8 Person Months

6. Simple estimation using Boehm model for the Agent.
E = 3.2 x (KLOC)!%
E =3.2x (1)%
E=3.2x(1)
E = 3.2 Person Months

7. To confirm the result we then used COCOMO to get a more accurate
estimate of effort and an estimated duration (table 1 and Equations 2
and 3).

8. As in Experiment 3 we keep the same type of project and the same
weights for organic mode.

9. COCOMO for the modified State Machine
E= abKLOCb”
E = 2.4(1.2)10
E = 2.9 Person Months

D= CbEdb
D = 2.5(2.9)%:38
D = 3.7 Months

10. COCOMO for the modified Agent

E = q,KLOC"
E =2.4(1)"%
E = 2.4 Person Months
D = CbEdb
D = 2.5(2.4)%38
D = 3.5 Months
Results
‘ Model ‘ Original Effort ‘ Effort After Modification ‘ Effort Of Modification ‘
State Machine 3.2 Months 3.8 Months 0.6 Months
Agent 2.9 Months 3.2 Months 0.3 Months

Table 3: Boehm estimation of effort before and after design modification in
Person Months

24

‘ Model ‘ Original Effort ‘ Effort After Modification ‘ Effort Of Modification ‘
State Machine 2.4 Months 2.9 Months 0.5 Months
Agent 2.2 Months 2.4 Months 0.2 Months

Table 4: COCOMO Estimation of effort before and after design modification
in Person Months

| Model | Original Duration | Duration After Modification | Duration Of Modification |
State Machine 3.5 Months 3.7 Months 0.2 Months
Agent 3.4 Months 3.5 Months 0.1 Months

Table 5: COCOMO Estimation of Duration before and after design modifica-
tion in calendar months

When we compare the results from the last two sections, we
begin to see a trend that is very interesting. We have spread this
comparison over three tables to make this relationship clearer. Table
3 describes the Boehm results from this experiment in comparison to
the results from Estimated Development Effort. Table 4 shows the
same information on effort as table 3, except that it is the result of
COCOMO effort estimation rather than Boehm. Table 5 represents
duration for both models according to effort.

In table 3 we notice that after the design modification, we have
a much higher degree of effort for the state machine module. This is
confirmed by the difference between effort for both modules, where
the additional effort for the state machine modification is twice that
of the agent modification. When we now compare the results in table
4 we again note a similar result. Although the estimations are far
more conservative, we notice that the difference in effort according
to COCOMO is more than double. While the actual estimations
vary in some degree the margins by which the models differ shows a
distinct trend that can be expected to continue.

In confirmation of the results above, table 5 shows a similar
trend as the other tables, where the additional duration for the state
machine model is at least double that of the agent module. When
you consider that the LOC for the additional behaviour made up
20% of the original code, one realises why the effort and duration
is so increased. Given that every new logical path creates added
complexity, the few LOC one has to add to make a modification
the better. Comparing this with the agent model the additional
code makes up only 11% of the original code. In other words the
percentage of code added to the state machine is almost double that
of the agent, possibly explaining the increase in effort and duration.

25

4.3 Software Engineering Comparison

Game development typically follows a prototyping approach where
new behaviours and game entities are added until a playable game
that can sustain a users interest is created. Thus it is of utmost
importance that the methodology used lends itself to such an ap-
proach. At the design stage this may involve adding new behaviours
and changing the interactions among the entities. At the program-
ming level this involves adding more logical paths which naturally
adds to the complexity. To measure the design effort involved objec-
tively, we have devised a control experiment where a design diagram
had to be changed to reflect a new game entity, which required new
behaviour for the Bombermen to handle this new entity. To measure
the programming effort objectively, we have measured the additional
logical paths created.

In the following experiments, it will be important for us to try
and compare complexity. We have tools available to us that are
in most cases accurate and helpful in this endeavour. One such
tool is McCabe’s complexity metric, which is capable of estimating a
designs code complexity based on the number of logical paths. When
McCabe’s is applied it will produce a number which will correspond
to a range in table 6. The higher the complexity of a design, the
harder it is to maintain, update, and the higher risk of introducing
bugs.

‘ Cyclomatic Complexity ‘ Risk Evaluation ‘
1-10 simple, without much risk
11-20 more complex, moderate risk
21-50 complex, high risk
greater than 50 untestable (very high risk)

Table 6: McCabe’s cyclomatic complexity values. [22]

Cyclomatic complexity is a widely used metric for measuring
soundness and confidence of a program. Introduced by Thomas Mc-
Cabe in 1976, it measures the number of linearly independent paths
through a program or module.

4.3.1 Incremental Modification

Hypothesis

It is hypothesised that the State machine model would be highly
coupled and therefore take much more time to extend. We have
attempted to simplify the agent definition so that designers with
next to no experience with agent concepts can evaluate the design

26

and make appropriate changes. We have kept the state machine
design however, as all subjects have had some experience with this
definition.

Apparatus

To undertake this experiment we used the following items.
e An agent Design.

e A State Machine Design.

e A clock of some kind

e Some volunteer agent and state machine designers

Method

The following method was taken during this experiment
1. First we distributed the designs to the subjects.
2. We gave a brief overview of both designs and a description of Bomberman.

3. We asked half the subjects to start with the agent definition, and the
other half to start with the state machine definition.

4. We timed how long each took to modify, and noted it.

5. We compiled the results and found the average time of modification and
then identified a common design implemented by the subjects.

6. The design modification was then added to the source code for both

models
Results
‘ Model ‘ Total Classes Modified ‘ Total Changes ‘
Agent Module 3 7
State Machine Module 6 10

Table 7: A summary of all modifications required to add a simple change to
behaviour. (See appendix for more detail

We identified the design change produced by the different par-
ticipants and came up with a unified design that was the most rep-
resentative. Figures 7 and 9 show the new design for both the state
machine and the agent (Changes Highlighted).

27

Cut Of Danger

Bomh Detecterd

Bomb
Detected

Planting
Barnh

Blowen Lp

Target Lost

Blown Lip

Figure 6: Initial State Machine definition for Bomberman before modification

Figure 6 is the original state machine definition while figure 7 is a
new state machine definition, which introduces additional behaviour.
Already we see that the state machine definition is becoming complex
with transitions from one state to almost every other state. This
means that a relatively minor change to the design could result in a
new state and many new transitions between this state and others.
We see exactly this situation in Figures 6 and 7 which is a simple
state machine, modelling simple behaviour. If we consider a typical
game using a complicated state machine, we might be dealing with
tens of new transitions.

While we were developing the two models, it quickly became
obvious that extending the original design of an agent equivalent to
the State machine was going to be trivial. We were attributing this
to the fact that the agent was designed and implemented after the
state machine. However its ease of design is confirmed during the
redesign experiment, where designers were able to redefine the agent
in far less time than it took them to modify the state machine as ta-
ble 8 shows. To ensure us of a fair comparison, half the participants
were required to extend the agent version first, and the remaining

28

Target Lost

Blawn Up

Figure 7: State Machine definition for Bomberman after modification (Changes

shown in red)

vice-versa. If one compares the original specifications of the state
machine (Figure 6) and the agent (Figure 8), one sees that both
methods adequately describe the AI behaviours. After modification
of the design, we see in figures 7 and 9 that the state machine defini-
tion becomes complicated. However the agent re-definition remains

Terminator
Detected

Terminator
Detected

Run Frarm
Terminator

Terminator
Detected

Blown Up

simple and understandable in comparison.

Terminatar
Detected

Planting

Blawm Up

Detected

State Machine First

Agent First

P1 ‘ P2 ‘ P3 P4 ‘ P5 ‘ P6

State Machine 7 8 4 4 2 2
Agent 1.5 1.5 1 1 1 105
Ratio 4.7:1 | 5.3:1 4:1 4:1] 2:1 | 4:1

Table 8: The time taken to make modifications in minutes

In order to compare software-engineering aspects of these two
models we decided to use software engineers in the experiment. We
collected a number of individuals of varying skills, some with expe-
rience with agents, others with experience with State Machines. We

29

Blawn Up

Agent Goals Corresponding JACK events Agent Plans To Execute

Escape Bomb Bomb Detected Escape Bomb
Move To Target Target Out Of Range Track Target
Find New Target Target Not Found Find Target
Blow Up Target Target In Range Place Bomb

Figure 8: A Simple agent definition that novice Agent designers can quickly
understand.

Agent Goals Corresponding JACK events Agent Plans To Execute
Escape Bomb Bomb Detected Escape Bomb

Move To Target Target Out Of Range Track Target

Find New Target Target Not Found Find Target

Blow Up Target Target In Range Place Bomb

Escape Terminator Terminator Detected Run From Terminator

Figure 9: A common design modification produced by experimentation

also included individuals who have a high degree of software engi-
neering experience but with little or no experience with agents or
state machines. We provided these subjects with design specifica-
tions for both modules, and a short description of Bomberman and
how to read these specifications. Finally we asked all those involved
with the experiment to expand the behaviour of both the agent and
the State Machine.

We noted that the time required to make the design modifications
to the agent specification, was much shorter, and that the time taken
to modify the state machine design was larger by a factor of ~5 times.
In addition to this many reported that they found the Agent design
much easier to change. In contrast to this, they found the State
machine design could quickly become complicated and required a
much higher degree of fore thought as to the correct states and
transitions. Some remarked that the agent design was a more human
way of defining the behaviour.

4.3.2 Complexity of Incremental Modification
Hypothesis

It is hypothesised that the State machine model would have a
higher complexity and that this complexity will grow drastically com-
pared to the agent model. From our experience during development
of the state machine, we noticed a single modification of behaviour
would result in potential changes in every other state. It therefore
makes sense to measure the complexity of both models to get an
understanding of just how complex they are, and which is easier to

30

maintain and test. The agent model is expected to have much less
complexity due to the concentration of its event generation com-
pared to the relative high coupling of the state machine and its state
transitions.

Apparatus

To undertake this experiment we used the following items.

The original design for the agent

The original design for the state machine

The original source for the agent

The original source for the state machine

The modified design for the agent

The modified design for the state machine

The modified source for the agent

The modified source for the state machine

McCabe’s complexity metric

Method

The following method was taken during this experiment.

1. We collected the designs and implementations that we had available from

the last experiment.

2. Then we applied McCabe’s to each model separately to try and determine
the complexity of each models design.

Results

McCabe’s Complexity

Model Original | After Modification
State Machine 17 25
Agent 6 7

Table 9: Complexity of State transitions and Agent plan initiation

31

Figure 11: A worst case addition to the small and simple state machine in
figure 10

Many tools are at our disposal when we need to get some un-
derstanding of complexity and design issues. We used McCabe’s
cyclomatic complexity [22] metric to gauge the complexity of state
transitions and plan generation for both modules. Table 9 shows the
results of McCabe’s on both models for the original implementation
and the complexity after the modification to behaviour. If we apply
McCabe’s to these modifications we just described, and we compare
them to the original McCabe’s shown in table 9 we find that the
two sets of complexity show some very interesting and provocative
results.

We see in table 9 that already there is a huge difference in com-
plexity between the Original implementation and the modified ver-
sion of the state machine. In addition to this we notice a difference

32

between the two models even though both models exhibit the same
behaviour. To add further meaning to these values with regard to
testing and maintainability, we use table 6 and notice that origi-
nal implementation of the state machine module was already in the
moderate risk of bugs range. This can be attributed to the greater
number of if/else if statements that manage the state transitions. We
could design a very simple state machine to reduce this complexity,
however this would sacrifice behavioural complexity. We can say
that the higher the number of state transitions directly affects the
inherent complexity from McCabe’s. Adding more transitions will
result in new logical paths, adding to the modules complexity. In
short, complexity both code and behavioural will be affected given
either of these 2 cases:

1. We increase the number of states.

2. or, we increase the number of transitions.

While both 1 and 2 will increase complexity, we realise that
by increasing the number of states, we must increase the number
of transitions as a natural consequence, so these two are related.
When we compare figures 6 and 7 to table 9, we notice that Mc-
Cabe’s produces a value of complexity that is equal to the number
of transitions. This demonstrates that any additional behaviour in-
troduced will increase the state machines complexity. In a worst
case scenario, a new state may require a transition to every other
state, and transitions from every state to our new state, as shown in
figures 10 and 11. We can describe this relationship with equation
4, where AC is the worst case Additional Complexity, and n is the
number of states.

AC =2n (4)

We have now identified the relationship between state machines,
state machine behaviour, and the resulting complexity from Mec-
Cabe’s. If we are to have a proper understanding of the wide dis-
crepancy McCabe’s produces in table 9, we need to identify the
relationship between the Agent definition, Agent behaviour, and it’s
resulting complexity. McCabe’s essentially relies on the number of
logical paths to gauge complexity. These paths often come from the
any comparison ie condition statements, loops etc. We define our
state machine through rule based transitions, which translate into
condition statements, the more rules of behaviour, the higher the
complexity. However in the case of agent design we use more of a
rule based evaluation, where the agent evaluates its situation and
posts a goal to achieve. The agent reduces its number of logical
paths by concentrating it evaluations into one block of evaluation
statements, simplifying the design.

33

5 Discussion

In this research, the well-known game Bomberman was produced
using both a FSM and an agent implementation. The behaviour for
both implementations were deliberately kept similar and simple with
a limited number of states and plans. Our motivation was primarily
to objectively measure how the performance and the software engi-
neering metrics vary as the game scales up with more behaviours and
characters. The rules of the game were changed where necessary, to
facilitate objective measurements. The study produced some inter-
esting and surprising results with regard to complexity, effort, and
performance.

5.1 Complexity

As game development often uses a prototyping approach, it is
essential that the design and code created be easily maintainable and
extendable.

(a). Design Complezity

Though we expected the design to be more extendable with the agent
model, the results far exceeded our expectations. It was evident from
the experiments, that adding behaviour to the FSM design was taking
approximately four to five times that of the agent design. In addition
to this greater time required, many participants failed to synthesise a
correct extension to the FSM design. Considering the simplicity of the
game produced and the small number of behaviours being dealt with, this
is a significant finding. This could be attributed to the high coupling of
the FSM. Adding a new state to a state machine which has n states would
introduce up to 2n new transitions, in the worst case. Hence we expect
the difference in design complexity to become significant as the game is
scaled up.

(b). Code Complexity

An important factor in maintainability and testability is that of code
complexity. Through McCabe’s complexity metric we were able to show
that the implementation of the state machine was far more complex than
that of the agent. We did not measure the total complexity of each mod-
ule as a lot of the complexity was shared. What we measured was the
rule based evaluation processes as this was very much the core difference
between the implementations. The rule based evaluation for the state
machine is distributed between the states, and represents transitions be-
tween states. The rule based evaluation for the agent is concentrated in
the agent definition and is concerned with event generation which initi-
ates plans.

To measure the additional complexity of a design modification, the pro-

posed changes by the test group were implemented in both models. We
compared the results of the first McCabe’s results to those of the second

34

and found that the state machine moved from moderate risk into a high
risk range. In contrast to this, the agent definition remained within the
simple module range and only increased by 1 point of complexity com-
pared to the state machine’s 8. This higher complexity can be attributed
to the distributed and highly coupled nature of the state machines rule
based evaluation.

With design complexity, every additional behaviour results in 2n
new transitions, in the worst case. Summing it over ¢ behaviours,
we end up with a number of new transitions, equal to the result of
the equation:

n=t
Y 2n=1"+1

n=1

Adding new behaviour with BDI involves adding a new plan.
Hence the complexity for t new behaviours is just t. Code complexity
too is directly related to the number of transitions. As can be seen,
the complexity for FSM and agent are of a different order of mag-
nitude, quadratic and linear respectively. We can safely conclude
that the agent model lends itself to more complex and intelligent
systems, when compared with the FSM.

5.2 Effort

There are essentially two types of effort that we are concerned
with in this work, effort to develop, and effort to extend. Due to the
prototyping approach taken up by most game developers, the effort
to extend is just as important as effort to develop.

(a). Effort to Develop

We didn’t know which of the two methods would involve less effort, nor
how we would objectively measure effort. It would be impossible to time
the development for both models as whichever model was developed first
would be at a disadvantage. We decided to use empirical estimation based
on lines of code and were rewarded with reasonably accurate estimates
made in an objective manner. The results were not overly exciting as
the difference in effort of development was in the Agents favour by only
a matter of days to a couple weeks.

(b). Effort to Extend
We decided to extend the behaviour of our Bombermen and then applied
the changes to both versions. The state machine implementation had
an increase of effort that was more than double that of the agent. This
allows us to predict that as the game scales up with more behaviours,
the effort will be far greater for the state machine.

35

The results clearly show that the effort involved in FSM is likely
to grow significantly as the number of behaviours increase. Hence
from the effort point of view, the agent methodology will lend itself
better for the newer type of games emerging in the market.

5.3 Performance

Game developers usually try to target the widest audience in
terms of computational power. The choice of model would have a
great bearing on the run-time performance and hence the compu-
tational power required. Therefore we are interested in comparing
the performance of a single agent with a state machine and how the
performance degrades with increasing scale.

(a). Singular Performance (comparing a single instance)

We were expecting the agents performance to be far worse than the state
machine. We were excited to find that the speed of the two implementa-
tions were quite comparable when the number of game entities were few.
We also found through our experiments, that emergent team behaviour
did not contribute significantly towards performance degradation. How-
ever, based on all the results we were able to conclude that the agent had
a small additional overhead associated with it.

(b). Accumulative Performance (comparing a group of instances)

We decided to time the cycle duration as the number of entities increase,
first with the agent, and then for the state machine. These results were
the most useful of the performance results as it showed that both models
degraded in a linear manner in proportion to the number of Bomber-
men. While both displayed a linear decrease in performance, the agent
model degraded at a far steeper rate. This showed that while the ad-
ditional overhead was manageable when the number of agents is small,
the overhead quickly accumulated, restricting the number of agents that
could be run in real-time. Due to the linear nature of the degradation,
it would also be possible to predict the performance degradation given n
Bombermen.

The linear increase in cycle time for both models allows game
developers to easily work out the limiting factor in terms of scale.
Given the higher rate of increase, the state machine will naturally
result in a lower threshold. Though we measured the rate of decay
to be much greater for the agent, it is obviously dependent on the
specific game. However we could safely say, any highly interactive
game produced using FSM can be run on a wider rage of computers
with varying CPU speeds, when compared to the equivalent game
produced using an agent.

36

6 Conclusion

The conclusions we can draw from this research can be distilled down into three
categories, design and code complexity, effort with regard to development and
maintenance, and finally run-time performance.

6.1 Complexity

e The design complexity of the state machine (quadratic) and the agent
(linear) are of a different order.

e Code complexity for the state machine increases significantly as the game
scales up with more behaviours. For the agent model, the complexity
increases linearly.

e We conclude that the agent model is more suited to the new type of
intelligent games emerging in the market, from a complexity point of
view.

6.2 Effort

e The effort required to produce the same behaviour was higher for FSM.

e As the game scales up with more behaviours the effort increases substan-
tially for FSM.

6.3 Performance

e The run-time performance for FSM and agent model is comparable when
the game entities involved are few.

e There is a linear increase in cycle time for both models, though the
overhead is much higher for the agents. This makes FSM the natural
choice when the number of entities are large and the speed is critical.

7 Further Work

7.1 Team Behaviour

Team behaviour was not thoroughly tested during this research,
as time constraints prevented any significant progress. This makes
team behaviour a natural extension of this research. Initial investiga-
tions showed that an agent implementation of team behaviour would
not be overly difficult. Pursuing this line of research would not be
possible without a state machine equivalent. It would be of partic-
ular interest to measure how the team behaviour affects complexity
and performance issues.

37

7.2 Hybrid Approach

Some research must be done to see if a Hybrid model could be
produced that take advantage of a state machines performance and
an agents ease of design and coding. To our knowledge there has
been little investigation into this topic. Some possible hybrids could
be.

e An agent which controls the state transitions for all state machines. In
this way only a single agent would ever be created, reducing the accumu-
lative overhead, while taking advantage of a state machines performance
and centralising its rule based evaluations in the agent.

e An agent definition that could only post specific events, given the evalu-
ation of an internal state.

This is by no means an exhaustive list of configurations, yet could
serve as a starting point in any research into a hybrid approach.

Acknowledgments

Special thanks must be extended to a person who came to a
confused undergraduate and upon hearing the Student’s intentions
to undertake an honours course volunteered to be my supervisor.
Charles Thevathayan and his tireless efforts, his understanding, and
his keeping me on the straight and narrow through the year will
always be appreciated. Another Special thanks must go to Peter
Bertok for his support and guidance in fine tuning the direction of
the research and for the benefit of his many years of experience as a
research supervisor.

I would also like to thank the Agents at RMIT group, for their
indirect and direct support through the year especially James Har-
land and Michael Winikoff. Thanks must also go to those who par-
ticipated in the design complexity experiments, whose participation
came at exactly the right moment.

In addition I must thank my family and friends for their un-
derstanding, support, and encouragement. Particularly my parents
Norma and Robert, and a true friend Rein Van Noppen.

38

References

[1] Philip E. Agre and David Chapman. Pengi: An implementation of a
theory of activity.

[2] Eric J. Braude. In Software Engineering An Object-Oriented perspective,
pages 110-114, John Wiley & Sons, Inc, 2001.

[3] Rodney A. Brooks. Intelligence without reason. 1991.
[4] Cristiano Castelfranchi. Modeling social action for ai agents. 1997.

[6] Lawrence Cavedon, Anand Rao, Liz Sonenberg, and Gil Tidhar. Team-
work via team plans in intelligent autonomous agent systems.

[6] Simon Ch’ng and Lin Padghim. From roles to teamwork: a framework
and architecture. 1997.

[7] Philip R. Cohen and Hector J Levesque. Intention is choice with commit-
ment. 1990.

[8] Richard Evans. The future of ai in games: A personal view. Game Devel-
oper, pages 46 — 49, August 2001.

[9] Jacques Ferber and Alex Drogoul. Using reactive multi-agentsystems in
simulation and problem solving. 1992.

[10] James R. Firby. An investigation into reactive planning in complex do-
mains. 1987.

[11] Michael Fisher and Michael Wooldridge. Executable temporal logic for
distributed a.i. 1993.

[12] Stan Franklin and Art Graesser. Is it an agent, or just a program: A
taxonomy for autonomous agents. 1996.

[13] Chis Hecker and Zachary Booth Simpson. State machine aka
(non)deterministic finite state machine, finite state automata, flow chart.
Game Developer, page 8, January 2001.

[14] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap
of agent research and development. 1998.

[15] Harry R. Lewis and Christo H. Papadimitriou. In Elements of the Theory
of Computation Second Edition, pages 55-111, Prentice-Hall, inc, 1998.

[16] Agent Oriented Software (AOS) Pty Ltd. Jack intelligent agents, practi-
cals. 2001.

[17] Agent Oriented Software (AOS) Pty Ltd. Jack intelligent agents, user
guide. 2001.

[18] Agent Oriented Software (AOS) Pty Ltd. Simpleteam technical brief.
2001.

39

[19] Pattie Maes. Modeling adaptive autonomous agents. 1994.

[20] Jorg P. Miller. Control architectures for autonomous and interacting
agents: A survey. 1998.

[21] Peter Molyneux. Postmortem: Lionhead studios’ black & white. Game
Developer, page 8, June 2001.

[22] Roger S. Pressman. In Software Engineering A Practitioner’s Approach,
pages 120-125, McGraw-Hill Companies, inc, 1997.

[23] Anand S. Rao and Michael P. Georgeff. Modeling rational agents within
a bdi-architecture. 1991.

[24] Anand S. Rao and Michael P. Georgeff. Bdi agents: From theory to
practice. 1995.

[25] Yaov Shoham. Agent-oriented programming. 1992.

[26] Yoav Shoham and Moshe Tennenholtz. On the emergence of social con-
ventions: modeling, analysis, and simulations. 1995.

[27] Milind Tambe. Executing team plans in dynamic, multi-agent domains.
1996.

[28] Milind Tambe. Towards flexible teamwork. 1997.

[29] John Thangarajah. Representation of goals in the belief-desire-intention
model. 2000.

[30] Dave Weinstein. State decision and consequence separation aka duplicated
state decision points. Game Developer, page 13, December 2000.

[31] Steven Woodcock. Game ai: The state of the industry 2000 - 2001. it’s not
just art, it’s engineering. Game Developer, pages 36 — 44, August 2001.

[32] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory
and practice. 1995.

[33] Michael Wooldridge and Nicholas R. Jennings. Pitfalls of agent-oriented
development. 1997.

[34] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. A method-
ology for agent-oriented analysis and design. 1999.

40

Appendix
A List Of Modifications

Below are all the changes that were required to make a change
of behaviour to both the agent model and the state machine. These
were also used to produce table 7

A.1 State Machine

Class RunFromTerminator

Create New Empty State

Define Internal State Transitions to Running, Searching, & Dying
Define RunFromTerminator State processing

Define helper method pickRandom(int[|[] totalMoves)

Define helper method isAwayFromTerminator(int[] currentLocation,
int[] legalMove, World w) in RunFromTerminator state

Class State
Define helper method terminatorClose(int[] currentLocation, World
w)

Class PlantingBomb
Add Internal State Transition to RunFromTerminator

Class Running
Add Internal State Transition to RunFromTerminator

Class Searching
Add Internal State Transition to RunFromTerminator

Class Tracking
Add Internal State Transition to RunFromTerminator

A.2 Agent

TerminatorClose event
Create new Event TerminatorClose

EscapeTerminator plan

Create new Plan EscapeTerminator

Define helper method pickRandom(int[][] totalMoves)

Define helper method isAwayFromTerminator(int[] currentLocation,
int[] legalMove, World w)

41

BombermanAgent agent

Allow TerminatorClose Event to be fired

Define helper method terminatorClose(int[] currentLocation, World
w)

Add to Handle and Post definitions

42

